Cargando…
Hybrid Space Vector PWM Strategy for Three-Phase VIENNA Rectifiers
Vienna rectifiers are widely used, but they have problems of zero-crossing current distortion and midpoint potential imbalance. In this paper, an improved hybrid modulation strategy is proposed. According to the phase difference between the reference voltage vector and the input current vector, the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460840/ https://www.ncbi.nlm.nih.gov/pubmed/36081065 http://dx.doi.org/10.3390/s22176607 |
Sumario: | Vienna rectifiers are widely used, but they have problems of zero-crossing current distortion and midpoint potential imbalance. In this paper, an improved hybrid modulation strategy is proposed. According to the phase difference between the reference voltage vector and the input current vector, the dynamic current crossing distortion sector is divided at each phase current crossing, and the discontinuous pulse width modulation strategy is adopted in the sector to suppress the redundant small vector mutation and improve the current crossing distortion. To solve the problem of midpoint potential balance, a space vector modulation strategy is adopted outside the sector to control the midpoint potential balance by allocating the time of small vector action by voltage balance factor. Finally, the effectiveness of the proposed method is verified by simulation and experiment. |
---|