Cargando…
Object-Cooperated Ternary Tree Partitioning Decision Method for Versatile Video Coding
In this paper, we propose an object-cooperated decision method for efficient ternary tree (TT) partitioning that reduces the encoding complexity of versatile video coding (VVC). In most previous studies, the VVC complexity was reduced using decision schemes based on the encoding context, which do no...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460852/ https://www.ncbi.nlm.nih.gov/pubmed/36080784 http://dx.doi.org/10.3390/s22176328 |
_version_ | 1784786848506183680 |
---|---|
author | Lee, Sujin Park, Sang-hyo Jun, Dongsan |
author_facet | Lee, Sujin Park, Sang-hyo Jun, Dongsan |
author_sort | Lee, Sujin |
collection | PubMed |
description | In this paper, we propose an object-cooperated decision method for efficient ternary tree (TT) partitioning that reduces the encoding complexity of versatile video coding (VVC). In most previous studies, the VVC complexity was reduced using decision schemes based on the encoding context, which do not apply object detecion models. We assume that high-level objects are important for deciding whether complex TT partitioning is required because they can provide hints on the characteristics of a video. Herein, we apply an object detection model that discovers and extracts the high-level object features—the number and ratio of objects from frames in a video sequence. Using the extracted features, we propose machine learning (ML)-based classifiers for each TT-split direction to efficiently reduce the encoding complexity of VVC and decide whether the TT-split process can be skipped in the vertical or horizontal direction. The TT-split decision of classifiers is formulated as a binary classification problem. Experimental results show that the proposed method more effectively decreases the encoding complexity of VVC than a state-of-the-art model based on ML. |
format | Online Article Text |
id | pubmed-9460852 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94608522022-09-10 Object-Cooperated Ternary Tree Partitioning Decision Method for Versatile Video Coding Lee, Sujin Park, Sang-hyo Jun, Dongsan Sensors (Basel) Article In this paper, we propose an object-cooperated decision method for efficient ternary tree (TT) partitioning that reduces the encoding complexity of versatile video coding (VVC). In most previous studies, the VVC complexity was reduced using decision schemes based on the encoding context, which do not apply object detecion models. We assume that high-level objects are important for deciding whether complex TT partitioning is required because they can provide hints on the characteristics of a video. Herein, we apply an object detection model that discovers and extracts the high-level object features—the number and ratio of objects from frames in a video sequence. Using the extracted features, we propose machine learning (ML)-based classifiers for each TT-split direction to efficiently reduce the encoding complexity of VVC and decide whether the TT-split process can be skipped in the vertical or horizontal direction. The TT-split decision of classifiers is formulated as a binary classification problem. Experimental results show that the proposed method more effectively decreases the encoding complexity of VVC than a state-of-the-art model based on ML. MDPI 2022-08-23 /pmc/articles/PMC9460852/ /pubmed/36080784 http://dx.doi.org/10.3390/s22176328 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Sujin Park, Sang-hyo Jun, Dongsan Object-Cooperated Ternary Tree Partitioning Decision Method for Versatile Video Coding |
title | Object-Cooperated Ternary Tree Partitioning Decision Method for Versatile Video Coding |
title_full | Object-Cooperated Ternary Tree Partitioning Decision Method for Versatile Video Coding |
title_fullStr | Object-Cooperated Ternary Tree Partitioning Decision Method for Versatile Video Coding |
title_full_unstemmed | Object-Cooperated Ternary Tree Partitioning Decision Method for Versatile Video Coding |
title_short | Object-Cooperated Ternary Tree Partitioning Decision Method for Versatile Video Coding |
title_sort | object-cooperated ternary tree partitioning decision method for versatile video coding |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460852/ https://www.ncbi.nlm.nih.gov/pubmed/36080784 http://dx.doi.org/10.3390/s22176328 |
work_keys_str_mv | AT leesujin objectcooperatedternarytreepartitioningdecisionmethodforversatilevideocoding AT parksanghyo objectcooperatedternarytreepartitioningdecisionmethodforversatilevideocoding AT jundongsan objectcooperatedternarytreepartitioningdecisionmethodforversatilevideocoding |