Cargando…
Novel Spatio-Temporal Continuous Sign Language Recognition Using an Attentive Multi-Feature Network
Given video streams, we aim to correctly detect unsegmented signs related to continuous sign language recognition (CSLR). Despite the increase in proposed deep learning methods in this area, most of them mainly focus on using only an RGB feature, either the full-frame image or details of hands and f...
Autores principales: | Aditya, Wisnu, Shih, Timothy K., Thaipisutikul, Tipajin, Fitriajie, Arda Satata, Gochoo, Munkhjargal, Utaminingrum, Fitri, Lin, Chih-Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460873/ https://www.ncbi.nlm.nih.gov/pubmed/36080911 http://dx.doi.org/10.3390/s22176452 |
Ejemplares similares
-
An Integrated Perspective on Spatio-Temporal Attention and Infant Language Acquisition
por: Russo, Sofia, et al.
Publicado: (2021) -
A deep feature-level fusion model for masked face identity recommendation system
por: Thaipisutikul, Tipajin, et al.
Publicado: (2022) -
A Spatio-Temporal Motion Network for Action Recognition Based on Spatial Attention
por: Yang, Qi, et al.
Publicado: (2022) -
Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch
por: Tan, Tan-Hsu, et al.
Publicado: (2023) -
Multi-cue temporal modeling for skeleton-based sign language recognition
por: Özdemir, Oğulcan, et al.
Publicado: (2023)