Cargando…
Applying an Integrated System of Cloud Management and Wireless Sensing Network to Green Smart Environments—Green Energy Monitoring on Campus
With increasing urbanization, the application of Internet of things (IoT) technology to city governance has become a trend in architecture, transportation, and healthcare management, making IoT applicable in various domains. This study used IoT to inspect green construction and adopted a front-end s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460919/ https://www.ncbi.nlm.nih.gov/pubmed/36080980 http://dx.doi.org/10.3390/s22176521 |
Sumario: | With increasing urbanization, the application of Internet of things (IoT) technology to city governance has become a trend in architecture, transportation, and healthcare management, making IoT applicable in various domains. This study used IoT to inspect green construction and adopted a front-end sensing system, middle-end wireless transmission, and a back-end multifunctional system structure with cloud management. It integrated civil and electrical engineering to develop environmental monitoring technology and proposed a management information system for the implementation of green engineering. This study collected physical “measurements” of the greening environment on a campus. Ambient temperature and humidity were analyzed to explore the greening and energy-saving benefits of a green roof, a pervious road, and a photovoltaic roof. When the ambient temperature was below 25 °C, the solar panels had an insulation effect on the roof of the building during both 4:00–5:00 and 12:00–13:00, with an optimal insulation effect of 2.45 °C. When the ambient temperature was above 25 °C, the panels had a cooling effect on the roof of the building, whether during 4:00–5:00 or 12:00–13:00, with an optimal cooling effect of 5.77 °C. During the lower temperature period (4:00–5:00), the ecological terrace had an insulation effect on the space beneath, with an effect of approximately 1–3 °C and a mean insulation of 1.95 °C. During the higher temperature period (12:00–13:00), it presented a cooling effect on the space beneath, with an effect of approximately 0.5–9 °C and a mean cooling temperature of 5.16 °C. The cooling effect of the three greening areas on air and ground temperature decreased in the following order: pervious road > photovoltaic roof > ecological terrace. |
---|