Cargando…
An automatic and intelligent brain tumor detection using Lee sigma filtered histogram segmentation model
Brain tumors are the second important origin of death worldwide. The early and exact identification of brain tumors is significant for the healing process. With accelerating diagnoses, medicine as well as pricing, quantum computing permits disruptive cases to providers. Quantum improved deep learnin...
Autores principales: | Kurian, Simy Mary, Juliet, Sujitha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9461434/ https://www.ncbi.nlm.nih.gov/pubmed/36105824 http://dx.doi.org/10.1007/s00500-022-07457-2 |
Ejemplares similares
-
Automatic Segmentation of Periapical Radiograph Using Color Histogram and Machine Learning for Osteoporosis Detection
por: Widyaningrum, Rini, et al.
Publicado: (2023) -
Automatic brain tissue segmentation based on graph filter
por: Kong, Youyong, et al.
Publicado: (2018) -
Object Relocation Visual Tracking Based on Histogram Filter and Siamese Network in Intelligent Transportation
por: Zhang, Jianlong, et al.
Publicado: (2022) -
Histogram equalization using a selective filter
por: Dyke, Roberto M., et al.
Publicado: (2022) -
RETRACTED ARTICLE: Modeling the progression of COVID-19 deaths using Kalman Filter and AutoML
por: Han, Tao, et al.
Publicado: (2021)