Cargando…
What are the consequences of ignoring cross-loadings in bifactor models? A simulation study assessing parameter recovery and sensitivity of goodness-of-fit indices
Bifactor latent models have gained popularity and are widely used to model construct multidimensionality. When adopting a confirmatory approach, a common practice is to assume that all cross-loadings take zero values. This article presents the results of a simulation study exploring the impact of ig...
Autores principales: | Ximénez, Carmen, Revuelta, Javier, Castañeda, Raúl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462382/ https://www.ncbi.nlm.nih.gov/pubmed/36092049 http://dx.doi.org/10.3389/fpsyg.2022.923877 |
Ejemplares similares
-
Consequences of ignoring clustering in linear regression
por: Ntani, Georgia, et al.
Publicado: (2021) -
Bifactor exploratory structural equation modeling: A meta-analytic review of model fit
por: Gegenfurtner, Andreas
Publicado: (2022) -
What is to be done? In the age of ignorance
por: Khan, Kate I.
Publicado: (2022) -
Fluxgate Sensor with Bifactor Excitation Mode
por: Bryakin, Ivan V., et al.
Publicado: (2023) -
Recovery of Weak Factor Loadings When Adding the Mean Structure in Confirmatory Factor Analysis: A Simulation Study
por: Ximénez, Carmen
Publicado: (2016)