Cargando…
Axon guidance receptor ROBO3 modulates subtype identity and prognosis via AXL-associated inflammatory network in pancreatic cancer
Metastatic pancreatic cancer (PDAC) has a poor clinical outcome with a 5-year survival rate below 3%. Recent transcriptome profiling of PDAC biopsies has identified 2 clinically distinct subtypes — the “basal-like” (BL) subtype with poor prognosis and therapy resistance compared with the less aggres...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462476/ https://www.ncbi.nlm.nih.gov/pubmed/35993361 http://dx.doi.org/10.1172/jci.insight.154475 |
Sumario: | Metastatic pancreatic cancer (PDAC) has a poor clinical outcome with a 5-year survival rate below 3%. Recent transcriptome profiling of PDAC biopsies has identified 2 clinically distinct subtypes — the “basal-like” (BL) subtype with poor prognosis and therapy resistance compared with the less aggressive and drug-susceptible “classical” (CLA) subtype. However, the mechanistic events and environmental factors that promote the BL subtype identity are not very clear. Using preclinical models, patient-derived xenografts, and FACS-sorted PDAC patient biopsies, we report here that the axon guidance receptor, roundabout guidance receptor 3 (ROBO3), promotes the BL metastatic program via a potentially unique AXL/IL-6/phosphorylated STAT3 (p-STAT3) regulatory axis. RNA-Seq identified a ROBO3-mediated BL-specific gene program, while tyrosine kinase profiling revealed AXL as the key mediator of the p-STAT3 activation. CRISPR/dCas9-based ROBO3 silencing disrupted the AXL/p-STAT3 signaling axis, thereby halting metastasis and enhancing therapy sensitivity. Transcriptome analysis of resected patient tumors revealed that AXL(hi) neoplastic cells associated with the inflammatory stromal program. Combining AXL inhibitor and chemotherapy substantially restored a CLA phenotypic state and reduced disease aggressiveness. Thus, we conclude that a ROBO3-driven hierarchical network determines the inflammatory and prometastatic programs in a specific PDAC subtype. |
---|