Cargando…

An in vivo model of glioblastoma radiation resistance identifies long noncoding RNAs and targetable kinases

Key molecular regulators of acquired radiation resistance in recurrent glioblastoma (GBM) are largely unknown, with a dearth of accurate preclinical models. To address this, we generated 8 GBM patient-derived xenograft (PDX) models of acquired radiation therapy–selected (RTS) resistance compared wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Stackhouse, Christian T., Anderson, Joshua C., Yue, Zongliang, Nguyen, Thanh, Eustace, Nicholas J., Langford, Catherine P., Wang, Jelai, Rowland, James R., Xing, Chuan, Mikhail, Fady M., Cui, Xiangqin, Alrefai, Hasan, Bash, Ryan E., Lee, Kevin J., Yang, Eddy S., Hjelmeland, Anita B., Miller, C. Ryan, Chen, Jake Y., Gillespie, G. Yancey, Willey, Christopher D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462495/
https://www.ncbi.nlm.nih.gov/pubmed/35852875
http://dx.doi.org/10.1172/jci.insight.148717
_version_ 1784787198024876032
author Stackhouse, Christian T.
Anderson, Joshua C.
Yue, Zongliang
Nguyen, Thanh
Eustace, Nicholas J.
Langford, Catherine P.
Wang, Jelai
Rowland, James R.
Xing, Chuan
Mikhail, Fady M.
Cui, Xiangqin
Alrefai, Hasan
Bash, Ryan E.
Lee, Kevin J.
Yang, Eddy S.
Hjelmeland, Anita B.
Miller, C. Ryan
Chen, Jake Y.
Gillespie, G. Yancey
Willey, Christopher D.
author_facet Stackhouse, Christian T.
Anderson, Joshua C.
Yue, Zongliang
Nguyen, Thanh
Eustace, Nicholas J.
Langford, Catherine P.
Wang, Jelai
Rowland, James R.
Xing, Chuan
Mikhail, Fady M.
Cui, Xiangqin
Alrefai, Hasan
Bash, Ryan E.
Lee, Kevin J.
Yang, Eddy S.
Hjelmeland, Anita B.
Miller, C. Ryan
Chen, Jake Y.
Gillespie, G. Yancey
Willey, Christopher D.
author_sort Stackhouse, Christian T.
collection PubMed
description Key molecular regulators of acquired radiation resistance in recurrent glioblastoma (GBM) are largely unknown, with a dearth of accurate preclinical models. To address this, we generated 8 GBM patient-derived xenograft (PDX) models of acquired radiation therapy–selected (RTS) resistance compared with same-patient, treatment-naive (radiation-sensitive, unselected; RTU) PDXs. These likely unique models mimic the longitudinal evolution of patient recurrent tumors following serial radiation therapy. Indeed, while whole-exome sequencing showed retention of major genomic alterations in the RTS lines, we did detect a chromosome 12q14 amplification that was associated with clinical GBM recurrence in 2 RTS models. A potentially novel bioinformatics pipeline was applied to analyze phenotypic, transcriptomic, and kinomic alterations, which identified long noncoding RNAs (lncRNAs) and targetable, PDX-specific kinases. We observed differential transcriptional enrichment of DNA damage repair pathways in our RTS models, which correlated with several lncRNAs. Global kinomic profiling separated RTU and RTS models, but pairwise analyses indicated that there are multiple molecular routes to acquired radiation resistance. RTS model–specific kinases were identified and targeted with clinically relevant small molecule inhibitors. This cohort of in vivo RTS patient-derived models will enable future preclinical therapeutic testing to help overcome the treatment resistance seen in patients with GBM.
format Online
Article
Text
id pubmed-9462495
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Clinical Investigation
record_format MEDLINE/PubMed
spelling pubmed-94624952022-09-13 An in vivo model of glioblastoma radiation resistance identifies long noncoding RNAs and targetable kinases Stackhouse, Christian T. Anderson, Joshua C. Yue, Zongliang Nguyen, Thanh Eustace, Nicholas J. Langford, Catherine P. Wang, Jelai Rowland, James R. Xing, Chuan Mikhail, Fady M. Cui, Xiangqin Alrefai, Hasan Bash, Ryan E. Lee, Kevin J. Yang, Eddy S. Hjelmeland, Anita B. Miller, C. Ryan Chen, Jake Y. Gillespie, G. Yancey Willey, Christopher D. JCI Insight Research Article Key molecular regulators of acquired radiation resistance in recurrent glioblastoma (GBM) are largely unknown, with a dearth of accurate preclinical models. To address this, we generated 8 GBM patient-derived xenograft (PDX) models of acquired radiation therapy–selected (RTS) resistance compared with same-patient, treatment-naive (radiation-sensitive, unselected; RTU) PDXs. These likely unique models mimic the longitudinal evolution of patient recurrent tumors following serial radiation therapy. Indeed, while whole-exome sequencing showed retention of major genomic alterations in the RTS lines, we did detect a chromosome 12q14 amplification that was associated with clinical GBM recurrence in 2 RTS models. A potentially novel bioinformatics pipeline was applied to analyze phenotypic, transcriptomic, and kinomic alterations, which identified long noncoding RNAs (lncRNAs) and targetable, PDX-specific kinases. We observed differential transcriptional enrichment of DNA damage repair pathways in our RTS models, which correlated with several lncRNAs. Global kinomic profiling separated RTU and RTS models, but pairwise analyses indicated that there are multiple molecular routes to acquired radiation resistance. RTS model–specific kinases were identified and targeted with clinically relevant small molecule inhibitors. This cohort of in vivo RTS patient-derived models will enable future preclinical therapeutic testing to help overcome the treatment resistance seen in patients with GBM. American Society for Clinical Investigation 2022-08-22 /pmc/articles/PMC9462495/ /pubmed/35852875 http://dx.doi.org/10.1172/jci.insight.148717 Text en © 2022 Stackhouse et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Stackhouse, Christian T.
Anderson, Joshua C.
Yue, Zongliang
Nguyen, Thanh
Eustace, Nicholas J.
Langford, Catherine P.
Wang, Jelai
Rowland, James R.
Xing, Chuan
Mikhail, Fady M.
Cui, Xiangqin
Alrefai, Hasan
Bash, Ryan E.
Lee, Kevin J.
Yang, Eddy S.
Hjelmeland, Anita B.
Miller, C. Ryan
Chen, Jake Y.
Gillespie, G. Yancey
Willey, Christopher D.
An in vivo model of glioblastoma radiation resistance identifies long noncoding RNAs and targetable kinases
title An in vivo model of glioblastoma radiation resistance identifies long noncoding RNAs and targetable kinases
title_full An in vivo model of glioblastoma radiation resistance identifies long noncoding RNAs and targetable kinases
title_fullStr An in vivo model of glioblastoma radiation resistance identifies long noncoding RNAs and targetable kinases
title_full_unstemmed An in vivo model of glioblastoma radiation resistance identifies long noncoding RNAs and targetable kinases
title_short An in vivo model of glioblastoma radiation resistance identifies long noncoding RNAs and targetable kinases
title_sort in vivo model of glioblastoma radiation resistance identifies long noncoding rnas and targetable kinases
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462495/
https://www.ncbi.nlm.nih.gov/pubmed/35852875
http://dx.doi.org/10.1172/jci.insight.148717
work_keys_str_mv AT stackhousechristiant aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT andersonjoshuac aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT yuezongliang aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT nguyenthanh aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT eustacenicholasj aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT langfordcatherinep aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT wangjelai aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT rowlandjamesr aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT xingchuan aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT mikhailfadym aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT cuixiangqin aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT alrefaihasan aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT bashryane aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT leekevinj aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT yangeddys aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT hjelmelandanitab aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT millercryan aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT chenjakey aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT gillespiegyancey aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT willeychristopherd aninvivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT stackhousechristiant invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT andersonjoshuac invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT yuezongliang invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT nguyenthanh invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT eustacenicholasj invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT langfordcatherinep invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT wangjelai invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT rowlandjamesr invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT xingchuan invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT mikhailfadym invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT cuixiangqin invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT alrefaihasan invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT bashryane invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT leekevinj invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT yangeddys invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT hjelmelandanitab invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT millercryan invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT chenjakey invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT gillespiegyancey invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases
AT willeychristopherd invivomodelofglioblastomaradiationresistanceidentifieslongnoncodingrnasandtargetablekinases