Cargando…
SEMA7A(R148W) mutation promotes lipid accumulation and NAFLD progression via increased localization on the hepatocyte surface
Genetic polymorphisms are associated with the development of nonalcoholic fatty liver disease (NAFLD). Semaphorin7a (Sema7a) deficiency in mouse peritoneal macrophages reduces fatty acid (FA) oxidation. Here, we identified 17 individuals with SEMA7A heterozygous mutations in 470 patients with biopsy...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462498/ https://www.ncbi.nlm.nih.gov/pubmed/35938531 http://dx.doi.org/10.1172/jci.insight.154113 |
Sumario: | Genetic polymorphisms are associated with the development of nonalcoholic fatty liver disease (NAFLD). Semaphorin7a (Sema7a) deficiency in mouse peritoneal macrophages reduces fatty acid (FA) oxidation. Here, we identified 17 individuals with SEMA7A heterozygous mutations in 470 patients with biopsy-proven NAFLD. SEMA7A heterozygous mutations increased susceptibility to NAFLD, steatosis severity, and NAFLD activity scores in humans and mice. The Sema7a(R145W) mutation (equivalent to human SEMA7A(R148W)) significantly induced small lipid droplet accumulation in mouse livers compared with WT mouse livers. Mechanistically, the Sema7a(R145W) mutation increased N-glycosylated Sema7a and its receptor integrin β1 proteins in the cell membranes of hepatocytes. Furthermore, Sema7a(R145W) mutation enhanced its protein interaction with integrin β1 and PKC-α and increased PKC-α phosphorylation, which were both abrogated by integrin β1 silencing. Induction of PKCα_WT, but not PKCα_dominant negative, overexpression induced transcriptional factors Srebp1, Chrebp, and Lxr expression and their downstream Acc1, Fasn, and Cd36 expression in primary mouse hepatocytes. Collectively, our findings demonstrate that the SEMA7A(R148W) mutation is a potentially new strong genetic determinant of NAFLD and promotes intrahepatic lipid accumulation and NAFLD in mice by enhancing PKC-α–stimulated FA and triglyceride synthesis and FA uptake. The inhibition of hepatic PKC-α signaling may lead to novel NAFLD therapies. |
---|