Cargando…
Fast acquisition of propagating waves in humans with low-field MRI: Toward accessible MR elastography
Most commonly used at clinical magnetic fields (1.5 to 3 T), magnetic resonance elastography (MRE) captures mechanical wave propagation to reconstruct the mechanical properties of soft tissue with MRI. However, in terms of noninvasively assessing disease progression in a broad range of organs (e.g.,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462689/ https://www.ncbi.nlm.nih.gov/pubmed/36083901 http://dx.doi.org/10.1126/sciadv.abo5739 |
Sumario: | Most commonly used at clinical magnetic fields (1.5 to 3 T), magnetic resonance elastography (MRE) captures mechanical wave propagation to reconstruct the mechanical properties of soft tissue with MRI. However, in terms of noninvasively assessing disease progression in a broad range of organs (e.g., liver, breast, skeletal muscle, and brain), its accessibility is limited and its robustness is challenged when magnetic susceptibility differences are encountered. Low-field MRE offers an opportunity to overcome these issues, and yet it has never been demonstrated in vivo in humans with magnetic fields <1.5 T mainly because of the long acquisition times required to achieve a sufficient signal-to-noise ratio. Here, we describe a method to accelerate 3D motion-sensitized MR scans at 0.1 T using only 10% k-space sampling combined with a high-performance detector and an efficient encoding acquisition strategy. Its application is demonstrated in vivo in the human forearm for a single motion-encoding direction in less than 1 min. |
---|