Cargando…

Management of Failed Bioprosthetic Aortic Valves: Mitigating Complications and Optimizing Outcomes

The use of bioprosthetic prostheses during surgical aortic valve replacements has increased dramatically over the last two decades, accounting for over 85% of surgical implantations. Given limited long-term durability, there has been an increase in aortic valve reoperations and reinterventions. With...

Descripción completa

Detalles Bibliográficos
Autores principales: Norton, Elizabeth L., Ward, Alison F., Greenbaum, Adam, Grubb, Kendra J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463031/
https://www.ncbi.nlm.nih.gov/pubmed/36101865
http://dx.doi.org/10.1155/2022/9737245
Descripción
Sumario:The use of bioprosthetic prostheses during surgical aortic valve replacements has increased dramatically over the last two decades, accounting for over 85% of surgical implantations. Given limited long-term durability, there has been an increase in aortic valve reoperations and reinterventions. With the advent of new technologies, multiple treatment strategies are available to treat bioprosthetic valve failure, including valve-in-valve (ViV) transcatheter aortic valve replacement (TAVR). However, ViV TAVR has an increased risk of higher gradients and patient prosthesis mismatch (PPM) secondary to placing the new valve within the rigid frame of the prior valve, especially in patients with a small surgical bioprosthesis in situ. Bioprosthetic valve fracture allows for placement of a larger transcatheter valve, as well as a fully expanded transcatheter valve, decreasing postoperative gradients and the risk of PPM.