Cargando…
Compatibility between snails and schistosomes: insights from new genetic resources, comparative genomics, and genetic mapping
The freshwater snail Biomphalaria glabrata is an important intermediate host of the parasite Schistosoma mansoni that causes human intestinal schistosomiasis. To better understand vector snail biology and help advance innovative snail control strategies, we have developed a new snail model consistin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463173/ https://www.ncbi.nlm.nih.gov/pubmed/36085314 http://dx.doi.org/10.1038/s42003-022-03844-5 |
Sumario: | The freshwater snail Biomphalaria glabrata is an important intermediate host of the parasite Schistosoma mansoni that causes human intestinal schistosomiasis. To better understand vector snail biology and help advance innovative snail control strategies, we have developed a new snail model consisting of two homozygous B. glabrata lines (iM line and iBS90) with sharply contrasting schistosome-resistance phenotypes. We produced and compared high-quality genome sequences for iM line and iBS90 which were assembled from 255 (N50 = 22.7 Mb) and 346 (N50 = 19.4 Mb) scaffolds, respectively. Using F2 offspring bred from the two lines and the newly generated iM line genome, we constructed 18 linkage groups (representing the 18 haploid chromosomes) covering 96% of the genome and identified three new QTLs (quantitative trait loci), two involved in snail resistance/susceptibility and one relating to body pigmentation. This study provides excellent genomic resources for unveiling complex vector snail biology, reveals genomic difference between resistant and susceptible lines, and offers novel insights into genetic mechanism of the compatibility between snail and schistosome. |
---|