Cargando…
Spatio-temporal estimation of wind speed and wind power using extreme learning machines: predictions, uncertainty and technical potential
With wind power providing an increasing amount of electricity worldwide, the quantification of its spatio-temporal variations and the related uncertainty is crucial for energy planners and policy-makers. Here, we propose a methodological framework which (1) uses machine learning to reconstruct a spa...
Autores principales: | Amato, Federico, Guignard, Fabian, Walch, Alina, Mohajeri, Nahid, Scartezzini, Jean-Louis, Kanevski, Mikhail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463360/ https://www.ncbi.nlm.nih.gov/pubmed/36101650 http://dx.doi.org/10.1007/s00477-022-02219-w |
Ejemplares similares
-
Fisher–Shannon Complexity Analysis of High-Frequency Urban Wind Speed Time Series
por: Guignard, Fabian, et al.
Publicado: (2019) -
A novel framework for spatio-temporal prediction of environmental data using deep learning
por: Amato, Federico, et al.
Publicado: (2020) -
RETRACTED ARTICLE: Forecasting of the wind speed under uncertainty
por: Aslam, Muhammad
Publicado: (2020) -
Retraction Note: Forecasting of the wind speed under uncertainty
por: Aslam, Muhammad
Publicado: (2022) -
Comparison of surface wind speed and wind speed profiles in the Taklimakan Desert
por: Liu, Xinchun, et al.
Publicado: (2022)