Cargando…

Efficient manual annotation of cryogenic electron tomograms using IMOD

Annotation highlights and segmentation isolates features in cryogenic electron tomograms to improve visualization and quantification of features (for example, their size and abundance, and spatial relationships with other features), facilitating phenotypic structural analyses of cellular tomograms....

Descripción completa

Detalles Bibliográficos
Autores principales: Danita, Cristina, Chiu, Wah, Galaz-Montoya, Jesús G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463458/
https://www.ncbi.nlm.nih.gov/pubmed/36097385
http://dx.doi.org/10.1016/j.xpro.2022.101658
_version_ 1784787394464055296
author Danita, Cristina
Chiu, Wah
Galaz-Montoya, Jesús G.
author_facet Danita, Cristina
Chiu, Wah
Galaz-Montoya, Jesús G.
author_sort Danita, Cristina
collection PubMed
description Annotation highlights and segmentation isolates features in cryogenic electron tomograms to improve visualization and quantification of features (for example, their size and abundance, and spatial relationships with other features), facilitating phenotypic structural analyses of cellular tomograms. Here, we present a manual annotation protocol using the open-source software IMOD and describe segmentation of three types of common cellular features: membranes, large globules, and filaments. IMOD’s interpolation function can improve the speed of manual annotation up to an order of magnitude.
format Online
Article
Text
id pubmed-9463458
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-94634582022-09-11 Efficient manual annotation of cryogenic electron tomograms using IMOD Danita, Cristina Chiu, Wah Galaz-Montoya, Jesús G. STAR Protoc Protocol Annotation highlights and segmentation isolates features in cryogenic electron tomograms to improve visualization and quantification of features (for example, their size and abundance, and spatial relationships with other features), facilitating phenotypic structural analyses of cellular tomograms. Here, we present a manual annotation protocol using the open-source software IMOD and describe segmentation of three types of common cellular features: membranes, large globules, and filaments. IMOD’s interpolation function can improve the speed of manual annotation up to an order of magnitude. Elsevier 2022-09-05 /pmc/articles/PMC9463458/ /pubmed/36097385 http://dx.doi.org/10.1016/j.xpro.2022.101658 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Danita, Cristina
Chiu, Wah
Galaz-Montoya, Jesús G.
Efficient manual annotation of cryogenic electron tomograms using IMOD
title Efficient manual annotation of cryogenic electron tomograms using IMOD
title_full Efficient manual annotation of cryogenic electron tomograms using IMOD
title_fullStr Efficient manual annotation of cryogenic electron tomograms using IMOD
title_full_unstemmed Efficient manual annotation of cryogenic electron tomograms using IMOD
title_short Efficient manual annotation of cryogenic electron tomograms using IMOD
title_sort efficient manual annotation of cryogenic electron tomograms using imod
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463458/
https://www.ncbi.nlm.nih.gov/pubmed/36097385
http://dx.doi.org/10.1016/j.xpro.2022.101658
work_keys_str_mv AT danitacristina efficientmanualannotationofcryogenicelectrontomogramsusingimod
AT chiuwah efficientmanualannotationofcryogenicelectrontomogramsusingimod
AT galazmontoyajesusg efficientmanualannotationofcryogenicelectrontomogramsusingimod