Cargando…
Algorithmic fairness in computational medicine
Machine learning models are increasingly adopted for facilitating clinical decision-making. However, recent research has shown that machine learning techniques may result in potential biases when making decisions for people in different subgroups, which can lead to detrimental effects on the health...
Autores principales: | Xu, Jie, Xiao, Yunyu, Wang, Wendy Hui, Ning, Yue, Shenkman, Elizabeth A., Bian, Jiang, Wang, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463525/ https://www.ncbi.nlm.nih.gov/pubmed/36084616 http://dx.doi.org/10.1016/j.ebiom.2022.104250 |
Ejemplares similares
-
Artificial intelligence for COVID-19: battling the pandemic with computational intelligence
por: Xu, Zhenxing, et al.
Publicado: (2022) -
Conceptualising fairness: three pillars for medical algorithms and health equity
por: Sikstrom, Laura, et al.
Publicado: (2022) -
Algorithmic fairness audits in intensive care medicine: artificial intelligence for all?
por: van de Sande, Davy, et al.
Publicado: (2022) -
Operationalising fairness in medical algorithms
por: Parbhoo, Sonali, et al.
Publicado: (2022) -
A Review of Partial Information Decomposition in Algorithmic Fairness and Explainability
por: Dutta, Sanghamitra, et al.
Publicado: (2023)