Cargando…
Scalable feature subset selection for big data using parallel hybrid evolutionary algorithm based wrapper under apache spark environment
Extant sequential wrapper-based feature subset selection (FSS) algorithms are not scalable and yield poor performance when applied to big datasets. Hence, to circumvent these challenges, we propose parallel and distributed hybrid evolutionary algorithms (EAs) based wrappers under Apache Spark. We pr...
Autores principales: | Vivek, Yelleti, Ravi, Vadlamani, Krishna, P. Radha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463682/ https://www.ncbi.nlm.nih.gov/pubmed/36105649 http://dx.doi.org/10.1007/s10586-022-03725-w |
Ejemplares similares
-
SparkRA: Enabling Big Data Scalability for the GATK RNA-seq Pipeline with Apache Spark
por: Al-Ars, Zaid, et al.
Publicado: (2020) -
Apache Spark for Scalable Physics Analysis
por: Dimakopoulos, Vasileios
Publicado: (2018) -
Scala and Spark for big data analytics: tame big data with Scala and Apache Spark!
por: Karim, Md Rezaul
Publicado: (2017) -
Apache Spark 2: master complex big data processing, stream analytics, and machine learning with Apache Spark
por: Kienzler, Romeo, et al.
Publicado: (2018) -
Big Data in metagenomics: Apache Spark vs MPI
por: Abuín, José M., et al.
Publicado: (2020)