Cargando…
Machine learning prediction of postoperative major adverse cardiovascular events in geriatric patients: a prospective cohort study
BACKGROUND: Postoperative major adverse cardiovascular events (MACEs) account for more than one-third of perioperative deaths. Geriatric patients are more vulnerable to postoperative MACEs than younger patients. Identifying high-risk patients in advance can help with clinical decision making and imp...
Autores principales: | Peng, Xiran, Zhu, Tao, Wang, Tong, Wang, Fengjun, Li, Ke, Hao, Xuechao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463850/ https://www.ncbi.nlm.nih.gov/pubmed/36088288 http://dx.doi.org/10.1186/s12871-022-01827-x |
Ejemplares similares
-
A multicenter prospective study on postoperative pulmonary complications prediction in geriatric patients with deep neural network model
por: Peng, Xiran, et al.
Publicado: (2022) -
Risk Prediction of Major Adverse Cardiovascular Events Occurrence Within 6 Months After Coronary Revascularization: Machine Learning Study
por: Wang, Jinwan, et al.
Publicado: (2022) -
Serum irisin correlates to the severity of acute myocardial infarction and predicts the postoperative major adverse cardiovascular events
por: Chai, Qiaoying, et al.
Publicado: (2023) -
Patient-level explainable machine learning to predict major adverse cardiovascular events from SPECT MPI and CCTA imaging
por: Alahdab, Fares, et al.
Publicado: (2023) -
Postoperative Major Adverse Cardiac Events in Patients With Systemic Lupus Erythematosus
por: Bruera, Sebastian, et al.
Publicado: (2022)