Cargando…

Lipid metabolism patterns and relevant clinical and molecular features of coronary artery disease patients: an integrated bioinformatic analysis

BACKGROUND: Hyperlipidaemia is an important factor that induces coronary artery disease (CAD). This study aimed to explore the lipid metabolism patterns and relevant clinical and molecular features of coronary artery disease patients. METHODS: In the current study, datasets were fetched from the Gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Yanhui, Dong, Zhenzhen, Liao, Hanhui, Chen, Yang, Hu, Longlong, Yu, Zuozhong, Xia, Yi, Zhao, Yuanbin, Fan, Kunpeng, Ding, Jingwen, Yao, Xiongda, Deng, Tianhua, Yang, Renqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464382/
https://www.ncbi.nlm.nih.gov/pubmed/36088434
http://dx.doi.org/10.1186/s12944-022-01696-w
Descripción
Sumario:BACKGROUND: Hyperlipidaemia is an important factor that induces coronary artery disease (CAD). This study aimed to explore the lipid metabolism patterns and relevant clinical and molecular features of coronary artery disease patients. METHODS: In the current study, datasets were fetched from the Gene Expression Omnibus (GEO) database and nonnegative matrix factorization clustering was used to establish a new CAD classification based on the gene expression profile of lipid metabolism genes. In addition, this study carried out bioinformatics analysis to explore intrinsic biological and clinical characteristics of the subgroups. RESULTS: Data for a total of 615 samples were extracted from the Gene Expression Omnibus database and were associated with clinical information. Then, this study used nonnegative matrix factorization clustering for RNA sequencing data of 581 lipid metabolism relevant genes, and the 296 patients with CAD were classified into three subgroups (NMF1, NMF2, and NMF3). Subjects in subgroup NMF2 tended to have an increased severity of CAD. The CAD index and age of group NMF1 were similar to those of group NMF3, but their intrinsic biological characteristics exhibited significant differences. In addition, weighted gene coexpression network analysis (WGCNA) was used to determine the most important modules and screen lipid metabolism related genes, followed by further analysis of the DEGs in which the significant genes were identified based on clinical information. The progression of coronary atherosclerosis may be influenced by genes such as PTGDS and DGKE. CONCLUSION: Different CAD subgroups have their own intrinsic biological characteristics, indicating that more personalized treatment should be provided to patients in each subgroup, and some lipid metabolism related genes (PDGTS, DGKE and so on) were related significantly with clinical characteristics.