Cargando…
Mobile service robots for the operating room wing: balancing cost and performance by optimizing robotic fleet size and composition
PURPOSE: Integrating fleets of mobile service robots into the operating room wing (OR wing) has the potential to help overcome staff shortages and reduce the amount of dull or unhealthy tasks for humans. However, the OR wing has been little studied in this regard and the requirements for realizing t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464430/ https://www.ncbi.nlm.nih.gov/pubmed/36088614 http://dx.doi.org/10.1007/s11548-022-02735-8 |
Sumario: | PURPOSE: Integrating fleets of mobile service robots into the operating room wing (OR wing) has the potential to help overcome staff shortages and reduce the amount of dull or unhealthy tasks for humans. However, the OR wing has been little studied in this regard and the requirements for realizing this vision have not yet been fully identified. This includes fundamental aspects such as fleet size and composition, which we have now studied comprehensively for the first time. METHODS: Using simulation, 150 different scenarios with varying fleet compositions, robot speeds and workloads were studied for a setup based on a real-life OR wing. The simulation included battery recharging cycles and queueing due to shared resources. RESULTS: For all simulated scenarios we report results regarding total duration of execution, average task response times and fleet utilization. The relationship between these performance measures and global scenario parameters—such as fleet size, fleet composition, robot velocity and the number of operating rooms to be served—is visualized. CONCLUSION: Our simulation-based studies have proven to be a valuable tool for individualized dimensioning of mobile robotic fleets, based on realistic workflows and environmental models. Thereby, important implications for future developments of mobile robots have been identified and a basis of decision-making regarding fleet size, fleet composition, robot capabilities and robot velocities can be provided. Due to costs, space limitations and safety requirements, these aspects must be carefully considered to successfully integrate mobile robotic technology into real-world OR wing environments. |
---|