Cargando…
Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system
The propagation of ocean surface waves within the marginal ice zone (MIZ) is a defining phenomenon of this dynamic zone. Over decades of study, a variety of methods have been developed to observe and model wave propagation in the MIZ, with a common focus of determining the attenuation of waves with...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464515/ https://www.ncbi.nlm.nih.gov/pubmed/36088921 http://dx.doi.org/10.1098/rsta.2021.0251 |
_version_ | 1784787598296743936 |
---|---|
author | Thomson, Jim |
author_facet | Thomson, Jim |
author_sort | Thomson, Jim |
collection | PubMed |
description | The propagation of ocean surface waves within the marginal ice zone (MIZ) is a defining phenomenon of this dynamic zone. Over decades of study, a variety of methods have been developed to observe and model wave propagation in the MIZ, with a common focus of determining the attenuation of waves with increasing distance into the MIZ. More recently, studies have begun to explore the consequences of wave attenuation and the coupled processes in the air–ice–ocean–land system. Understanding these coupled processes and effects is essential for accurate high-latitude forecasts. As waves attenuate, their momentum and energy are transferred to the sea ice and upper ocean. This may compact or expand the MIZ, depending on the conditions, while simultaneously modulating the wind work on the system. Wave attenuation is also a key process in coastal dynamics, where land–fast ice has historically protected both natural coasts and coastal infrastructure. With observed trends of increasing wave activity and retreating seasonal ice coverage, the propagation of waves within the MIZ is increasingly important to regional and global climate trends. This article is part of the theme issue ‘Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks’. |
format | Online Article Text |
id | pubmed-9464515 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-94645152022-09-27 Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system Thomson, Jim Philos Trans A Math Phys Eng Sci Articles The propagation of ocean surface waves within the marginal ice zone (MIZ) is a defining phenomenon of this dynamic zone. Over decades of study, a variety of methods have been developed to observe and model wave propagation in the MIZ, with a common focus of determining the attenuation of waves with increasing distance into the MIZ. More recently, studies have begun to explore the consequences of wave attenuation and the coupled processes in the air–ice–ocean–land system. Understanding these coupled processes and effects is essential for accurate high-latitude forecasts. As waves attenuate, their momentum and energy are transferred to the sea ice and upper ocean. This may compact or expand the MIZ, depending on the conditions, while simultaneously modulating the wind work on the system. Wave attenuation is also a key process in coastal dynamics, where land–fast ice has historically protected both natural coasts and coastal infrastructure. With observed trends of increasing wave activity and retreating seasonal ice coverage, the propagation of waves within the MIZ is increasingly important to regional and global climate trends. This article is part of the theme issue ‘Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks’. The Royal Society 2022-10-31 2022-09-12 /pmc/articles/PMC9464515/ /pubmed/36088921 http://dx.doi.org/10.1098/rsta.2021.0251 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Thomson, Jim Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system |
title | Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system |
title_full | Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system |
title_fullStr | Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system |
title_full_unstemmed | Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system |
title_short | Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system |
title_sort | wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464515/ https://www.ncbi.nlm.nih.gov/pubmed/36088921 http://dx.doi.org/10.1098/rsta.2021.0251 |
work_keys_str_mv | AT thomsonjim wavepropagationinthemarginalicezoneconnectionsandfeedbackmechanismswithintheairiceoceansystem |