Cargando…
Comparison of Convolutional Neural Network Architectures for Robustness Against Common Artefacts in Dermatoscopic Images
INTRODUCTION: Classification of dermatoscopic images via neural networks shows comparable performance to clinicians in experimental conditions but can be affected by artefacts like skin markings or rulers. It is unknown whether specialized neural networks are more robust to artefacts. OBJECTIVES: An...
Autores principales: | Katsch, Florian, Rinner, Christoph, Tschandl, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mattioli 1885
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464520/ https://www.ncbi.nlm.nih.gov/pubmed/36159141 http://dx.doi.org/10.5826/dpc.1203a126 |
Ejemplares similares
-
Dermatoscopic pattern of a spiradenoma
por: Tschandl, Philipp
Publicado: (2012) -
Recurrent nevi: report of three cases with dermatoscopic-dermatopathologic correlation
por: Tschandl, Philipp
Publicado: (2013) -
Sequential digital dermatoscopic imaging of patients with multiple atypical nevi
por: Tschandl, Philipp
Publicado: (2018) -
The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
por: Tschandl, Philipp, et al.
Publicado: (2018) -
Growth rate of melanoma in vivo and correlation with dermatoscopic and dermatopathologic findings
por: Beer, Jürgen, et al.
Publicado: (2011)