Cargando…
COVID-19 ground-glass opacity segmentation based on fuzzy c-means clustering and improved random walk algorithm
Accurate segmentation of ground-glass opacity (GGO) is an important premise for doctors to judge COVID-19. Aiming at the problem of mis-segmentation for GGO segmentation methods, especially the problem of adhesive GGO connected with chest wall or blood vessel, this paper proposes an accurate segment...
Autores principales: | Wang, Guowei, Guo, Shuli, Han, Lina, Zhao, Zhilei, Song, Xiaowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464590/ https://www.ncbi.nlm.nih.gov/pubmed/36119901 http://dx.doi.org/10.1016/j.bspc.2022.104159 |
Ejemplares similares
-
An Automatic Random Walker Algorithm for Segmentation of Ground Glass Opacity Pulmonary Nodules
por: Li, Xiangxia, et al.
Publicado: (2022) -
Peripheral consolidation/ground-glass opacities
por: Marchiori, Edson, et al.
Publicado: (2020) -
GROUND GLASS OPACITIES: IT'S NOT ALL COVID
por: RAMIREZ, LEANDRO, et al.
Publicado: (2021) -
Ground-glass opacities with subpleural sparing
por: Marchiori, Edson, et al.
Publicado: (2021) -
Ground-glass opacities accompanied by pulmonary cysts
por: Marchiori, Edson, et al.
Publicado: (2020)