Cargando…
GCLDNet: Gastric cancer lesion detection network combining level feature aggregation and attention feature fusion
BACKGROUND: Analysis of histopathological slices of gastric cancer is the gold standard for diagnosing gastric cancer, while manual identification is time-consuming and highly relies on the experience of pathologists. Artificial intelligence methods, particularly deep learning, can assist pathologis...
Autores principales: | Shi, Xu, Wang, Long, Li, Yu, Wu, Jian, Huang, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464831/ https://www.ncbi.nlm.nih.gov/pubmed/36106104 http://dx.doi.org/10.3389/fonc.2022.901475 |
Ejemplares similares
-
A lightweight network based on dual-stream feature fusion and dual-domain attention for white blood cells segmentation
por: Luo, Yang, et al.
Publicado: (2023) -
Gastric polyp detection module based on improved attentional feature fusion
por: Xie, Yun, et al.
Publicado: (2023) -
Attention-based dual-path feature fusion network for automatic skin lesion segmentation
por: He, Zhenxiang, et al.
Publicado: (2023) -
Multi-channel feature fusion attention Dehazing network
por: Zou, Changjun, et al.
Publicado: (2023) -
Multi-semantic feature fusion attention network for binary code similarity detection
por: Li, Bangling, et al.
Publicado: (2023)