Cargando…
Computational solutions for spatial transcriptomics
Transcriptome level expression data connected to the spatial organization of the cells and molecules would allow a comprehensive understanding of how gene expression is connected to the structure and function in the biological systems. The spatial transcriptomics platforms may soon provide such info...
Autores principales: | Kleino, Iivari, Frolovaitė, Paulina, Suomi, Tomi, Elo, Laura L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464853/ https://www.ncbi.nlm.nih.gov/pubmed/36147664 http://dx.doi.org/10.1016/j.csbj.2022.08.043 |
Ejemplares similares
-
Enhanced differential expression statistics for data-independent acquisition proteomics
por: Suomi, Tomi, et al.
Publicado: (2017) -
Introducing untargeted data-independent acquisition for metaproteomics of complex microbial samples
por: Pietilä, Sami, et al.
Publicado: (2022) -
A systematic evaluation of normalization methods in quantitative label-free proteomics
por: Välikangas, Tommi, et al.
Publicado: (2016) -
A comprehensive evaluation of popular proteomics software workflows for label-free proteome quantification and imputation
por: Välikangas, Tommi, et al.
Publicado: (2017) -
COVID-19-specific transcriptomic signature detectable in blood across multiple cohorts
por: Välikangas, Tommi, et al.
Publicado: (2022)