Cargando…
Calculation of exact Shapley values for support vector machines with Tanimoto kernel enables model interpretation
The support vector machine (SVM) algorithm is popular in chemistry and drug discovery. SVM models have black box character. Their predictions can be interpreted through feature weighting or the model-agnostic Shapley additive explanations (SHAP) formalism that locally approximates Shapley values (SV...
Autores principales: | Feldmann, Christian, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464958/ https://www.ncbi.nlm.nih.gov/pubmed/36105596 http://dx.doi.org/10.1016/j.isci.2022.105023 |
Ejemplares similares
-
Calculation of exact Shapley values for explaining support vector machine models using the radial basis function kernel
por: Mastropietro, Andrea, et al.
Publicado: (2023) -
ccbmlib – a Python package for modeling Tanimoto similarity value distributions
por: Vogt, Martin, et al.
Publicado: (2020) -
Differences in learning characteristics between support vector machine and random forest models for compound classification revealed by Shapley value analysis
por: Siemers, Friederike Maite, et al.
Publicado: (2023) -
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2020) -
EdgeSHAPer: Bond-centric Shapley value-based explanation method for graph neural networks
por: Mastropietro, Andrea, et al.
Publicado: (2022)