Cargando…
Scalable radiotherapy data curation infrastructure for deep-learning based autosegmentation of organs-at-risk: A case study in head and neck cancer
In this era of patient-centered, outcomes-driven and adaptive radiotherapy, deep learning is now being successfully applied to tackle imaging-related workflow bottlenecks such as autosegmentation and dose planning. These applications typically require supervised learning approaches enabled by relati...
Autores principales: | Tryggestad, E., Anand, A., Beltran, C., Brooks, J., Cimmiyotti, J., Grimaldi, N., Hodge, T., Hunzeker, A., Lucido, J. J., Laack, N. N., Momoh, R., Moseley, D. J., Patel, S. H., Ridgway, A., Seetamsetty, S., Shiraishi, S., Undahl, L., Foote, R. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464982/ https://www.ncbi.nlm.nih.gov/pubmed/36106100 http://dx.doi.org/10.3389/fonc.2022.936134 |
Ejemplares similares
-
Autosegmentation of the rectum on megavoltage image guidance scans
por: Shelley, L E A, et al.
Publicado: (2019) -
Automated testing platform for radiotherapy treatment planning scripts
por: Lucido, Joseph John, et al.
Publicado: (2022) -
Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planning
por: Lucido, J. John, et al.
Publicado: (2023) -
The suitability of common metrics for assessing parotid and larynx autosegmentation accuracy
por: Beasley, William J., et al.
Publicado: (2016) -
An attention base U-net for parotid tumor autosegmentation
por: Xia, Xianwu, et al.
Publicado: (2022)