Cargando…
Differential Blood Counts Do Not Consistently Predict Clinical Measurements of Bone Mineral Density and Microarchitecture at Homeostasis
The hematopoietic stem cell niche constitutes a complex bone marrow (BM) microenvironment. Osteoporosis is characterized by both reduced bone mineral density (BMD) and microarchitectural deterioration, constituting the most frequent alteration of the BM microenvironment. It is unclear to which exten...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464992/ https://www.ncbi.nlm.nih.gov/pubmed/36111204 http://dx.doi.org/10.1002/jbm4.10669 |
_version_ | 1784787695213477888 |
---|---|
author | Schyrr, Frederica Marques‐Vidal, Pedro Hans, Didier Lamy, Olivier Naveiras, Olaia |
author_facet | Schyrr, Frederica Marques‐Vidal, Pedro Hans, Didier Lamy, Olivier Naveiras, Olaia |
author_sort | Schyrr, Frederica |
collection | PubMed |
description | The hematopoietic stem cell niche constitutes a complex bone marrow (BM) microenvironment. Osteoporosis is characterized by both reduced bone mineral density (BMD) and microarchitectural deterioration, constituting the most frequent alteration of the BM microenvironment. It is unclear to which extent modifications of the BM microenvironment, including in the context of osteoporosis, influence blood cell production. We aimed to describe the association between lumbar spine and total hip BMD and microarchitecture (assessed by trabecular bone score [TBS]) and differential blood counts. Data were collected at two time points from 803 (first assessment) and 901 (second assessment) postmenopausal women participating in the CoLaus/OsteoLaus cohort, a population‐based sample in Lausanne, Switzerland. Participants with other active disease or treatment that could influence hematopoiesis or osteoporosis were excluded. Bivariate and multivariate associations between each peripheral blood cell count and BMD or TBS were performed. Additionally, participants in the highest BMD and TBS tertiles were compared with participants in the lowest BMD and TBS tertiles. At first assessment, only neutrophils were significantly different in the lowest BMD and TBS tertile (3.18 ± 0.09 versus 3.47 ± 0.08 G/L, p = 0.028). At the second assessment, leucocytes (5.90 ± 0.11 versus 5.56 ± 0.10 G/L, p = 0.033), lymphocytes (1.87 ± 0.04 versus 1.72 ± 0.04 G/L p = 0.033), and monocytes (0.49 ± 0.01 versus 0.46 ± 0.1 G/L, p = 0.033) were significantly different. Power analysis did not identify quasi‐significant associations missed due to sample size. Although significant associations between blood counts and BMD or TBS were found, none was consistent across bone measurements or assessments. This study suggests that, at homeostasis and in postmenopausal women, there is no clinically significant association between the osteoporotic microenvironment and blood production output as measured by differential blood counts. In the context of conflicting reports on the relationship between osteoporosis and hematopoiesis, our study represents the first prospective two time‐point analysis of a large, homogenous cohort at steady state. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. |
format | Online Article Text |
id | pubmed-9464992 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94649922022-09-14 Differential Blood Counts Do Not Consistently Predict Clinical Measurements of Bone Mineral Density and Microarchitecture at Homeostasis Schyrr, Frederica Marques‐Vidal, Pedro Hans, Didier Lamy, Olivier Naveiras, Olaia JBMR Plus Original Article The hematopoietic stem cell niche constitutes a complex bone marrow (BM) microenvironment. Osteoporosis is characterized by both reduced bone mineral density (BMD) and microarchitectural deterioration, constituting the most frequent alteration of the BM microenvironment. It is unclear to which extent modifications of the BM microenvironment, including in the context of osteoporosis, influence blood cell production. We aimed to describe the association between lumbar spine and total hip BMD and microarchitecture (assessed by trabecular bone score [TBS]) and differential blood counts. Data were collected at two time points from 803 (first assessment) and 901 (second assessment) postmenopausal women participating in the CoLaus/OsteoLaus cohort, a population‐based sample in Lausanne, Switzerland. Participants with other active disease or treatment that could influence hematopoiesis or osteoporosis were excluded. Bivariate and multivariate associations between each peripheral blood cell count and BMD or TBS were performed. Additionally, participants in the highest BMD and TBS tertiles were compared with participants in the lowest BMD and TBS tertiles. At first assessment, only neutrophils were significantly different in the lowest BMD and TBS tertile (3.18 ± 0.09 versus 3.47 ± 0.08 G/L, p = 0.028). At the second assessment, leucocytes (5.90 ± 0.11 versus 5.56 ± 0.10 G/L, p = 0.033), lymphocytes (1.87 ± 0.04 versus 1.72 ± 0.04 G/L p = 0.033), and monocytes (0.49 ± 0.01 versus 0.46 ± 0.1 G/L, p = 0.033) were significantly different. Power analysis did not identify quasi‐significant associations missed due to sample size. Although significant associations between blood counts and BMD or TBS were found, none was consistent across bone measurements or assessments. This study suggests that, at homeostasis and in postmenopausal women, there is no clinically significant association between the osteoporotic microenvironment and blood production output as measured by differential blood counts. In the context of conflicting reports on the relationship between osteoporosis and hematopoiesis, our study represents the first prospective two time‐point analysis of a large, homogenous cohort at steady state. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. John Wiley & Sons, Inc. 2022-08-30 /pmc/articles/PMC9464992/ /pubmed/36111204 http://dx.doi.org/10.1002/jbm4.10669 Text en © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Schyrr, Frederica Marques‐Vidal, Pedro Hans, Didier Lamy, Olivier Naveiras, Olaia Differential Blood Counts Do Not Consistently Predict Clinical Measurements of Bone Mineral Density and Microarchitecture at Homeostasis |
title | Differential Blood Counts Do Not Consistently Predict Clinical Measurements of Bone Mineral Density and Microarchitecture at Homeostasis |
title_full | Differential Blood Counts Do Not Consistently Predict Clinical Measurements of Bone Mineral Density and Microarchitecture at Homeostasis |
title_fullStr | Differential Blood Counts Do Not Consistently Predict Clinical Measurements of Bone Mineral Density and Microarchitecture at Homeostasis |
title_full_unstemmed | Differential Blood Counts Do Not Consistently Predict Clinical Measurements of Bone Mineral Density and Microarchitecture at Homeostasis |
title_short | Differential Blood Counts Do Not Consistently Predict Clinical Measurements of Bone Mineral Density and Microarchitecture at Homeostasis |
title_sort | differential blood counts do not consistently predict clinical measurements of bone mineral density and microarchitecture at homeostasis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464992/ https://www.ncbi.nlm.nih.gov/pubmed/36111204 http://dx.doi.org/10.1002/jbm4.10669 |
work_keys_str_mv | AT schyrrfrederica differentialbloodcountsdonotconsistentlypredictclinicalmeasurementsofbonemineraldensityandmicroarchitectureathomeostasis AT marquesvidalpedro differentialbloodcountsdonotconsistentlypredictclinicalmeasurementsofbonemineraldensityandmicroarchitectureathomeostasis AT hansdidier differentialbloodcountsdonotconsistentlypredictclinicalmeasurementsofbonemineraldensityandmicroarchitectureathomeostasis AT lamyolivier differentialbloodcountsdonotconsistentlypredictclinicalmeasurementsofbonemineraldensityandmicroarchitectureathomeostasis AT naveirasolaia differentialbloodcountsdonotconsistentlypredictclinicalmeasurementsofbonemineraldensityandmicroarchitectureathomeostasis |