Cargando…

What is the optimal input information for deep learning-based pre-treatment error identification in radiotherapy?

BACKGROUND AND PURPOSE: Deep learning (DL) provides high sensitivity for detecting and identifying errors in pre-treatment radiotherapy quality assurance (QA). This work’s objective was to systematically evaluate the impact of different dose comparison and image preprocessing methods on DL model per...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolfs, Cecile J.A., Verhaegen, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465434/
https://www.ncbi.nlm.nih.gov/pubmed/36106060
http://dx.doi.org/10.1016/j.phro.2022.08.007
Descripción
Sumario:BACKGROUND AND PURPOSE: Deep learning (DL) provides high sensitivity for detecting and identifying errors in pre-treatment radiotherapy quality assurance (QA). This work’s objective was to systematically evaluate the impact of different dose comparison and image preprocessing methods on DL model performance for error identification in pre-treatment QA. MATERIALS AND METHODS: For 53 volumetric modulated arc therapy (VMAT) and 69 stereotactic body radiotherapy (SBRT) treatment plans of lung cancer patients, mechanical errors were simulated (MLC leaf positions, monitor unit scaling, collimator rotation). Two classification levels were assessed: error type (Level 1) and error magnitude (Level 2). Portal dose images with and without errors were compared using standard (gamma analysis), simple (absolute/relative dose difference, ratio) and alternative (distance-to-agreement, structural similarity index, gradient) dose comparison methods. For preprocessing, different normalization methods (min/max and mean/standard deviation) and image resolutions (32 × 32, 64 × 64 and 128 × 128) were evaluated. All possible combinations of classification level, dose comparison, normalization method and image size resulted in 144 input datasets for DL networks for error identification. RESULTS: Average accuracy was highest for simple dose comparison methods (Level 1: 97.7%, Level 2: 78.1%) while alternative methods scored lowest (Level 1: 91.6%, Level 2: 71.2%). Mean/stdev normalization particularly improved Level 2 classification. Higher image resolution improved error identification, although for SBRT lower image resolution was also sufficient. CONCLUSIONS: The choice of dose comparison method has the largest impact on error identification for pre-treatment QA using DL, compared to image preprocessing. Model performance can improve by using simple dose comparison methods, mean/stdev normalization and high image resolution.