Cargando…
Automated detection and quantification of brain metastases on clinical MRI data using artificial neural networks
BACKGROUND: Reliable detection and precise volumetric quantification of brain metastases (BM) on MRI are essential for guiding treatment decisions. Here we evaluate the potential of artificial neural networks (ANN) for automated detection and quantification of BM. METHODS: A consecutive series of 30...
Autores principales: | Pflüger, Irada, Wald, Tassilo, Isensee, Fabian, Schell, Marianne, Meredig, Hagen, Schlamp, Kai, Bernhardt, Denise, Brugnara, Gianluca, Heußel, Claus Peter, Debus, Juergen, Wick, Wolfgang, Bendszus, Martin, Maier-Hein, Klaus H, Vollmuth, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9466273/ https://www.ncbi.nlm.nih.gov/pubmed/36105388 http://dx.doi.org/10.1093/noajnl/vdac138 |
Ejemplares similares
-
Automated brain extraction of multisequence MRI using artificial neural networks
por: Isensee, Fabian, et al.
Publicado: (2019) -
Assessing the added value of apparent diffusion coefficient, cerebral blood volume, and radiomic magnetic resonance features for differentiation of pseudoprogression versus true tumor progression in patients with glioblastoma
por: Leone, Riccardo, et al.
Publicado: (2023) -
Deep-learning based detection of vessel occlusions on CT-angiography in patients with suspected acute ischemic stroke
por: Brugnara, Gianluca, et al.
Publicado: (2023) -
Automated hippocampal segmentation algorithms evaluated in stroke patients
por: Schell, Marianne, et al.
Publicado: (2023) -
Tensor- and high-resolution fiber tractography for the delineation of the optic radiation and corticospinal tract in the proximity of intracerebral lesions: a reproducibility and repeatability study
por: Lenga, Pavlina, et al.
Publicado: (2023)