Cargando…

Neural synchronization is strongest to the spectral flux of slow music and depends on familiarity and beat salience

Neural activity in the auditory system synchronizes to sound rhythms, and brain–environment synchronization is thought to be fundamental to successful auditory perception. Sound rhythms are often operationalized in terms of the sound’s amplitude envelope. We hypothesized that – especially for music...

Descripción completa

Detalles Bibliográficos
Autores principales: Weineck, Kristin, Wen, Olivia Xin, Henry, Molly J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9467512/
https://www.ncbi.nlm.nih.gov/pubmed/36094165
http://dx.doi.org/10.7554/eLife.75515
Descripción
Sumario:Neural activity in the auditory system synchronizes to sound rhythms, and brain–environment synchronization is thought to be fundamental to successful auditory perception. Sound rhythms are often operationalized in terms of the sound’s amplitude envelope. We hypothesized that – especially for music – the envelope might not best capture the complex spectro-temporal fluctuations that give rise to beat perception and synchronized neural activity. This study investigated (1) neural synchronization to different musical features, (2) tempo-dependence of neural synchronization, and (3) dependence of synchronization on familiarity, enjoyment, and ease of beat perception. In this electroencephalography study, 37 human participants listened to tempo-modulated music (1–4 Hz). Independent of whether the analysis approach was based on temporal response functions (TRFs) or reliable components analysis (RCA), the spectral flux of music – as opposed to the amplitude envelope – evoked strongest neural synchronization. Moreover, music with slower beat rates, high familiarity, and easy-to-perceive beats elicited the strongest neural response. Our results demonstrate the importance of spectro-temporal fluctuations in music for driving neural synchronization, and highlight its sensitivity to musical tempo, familiarity, and beat salience.