Cargando…
Identifying individual social risk factors using unstructured data in electronic health records and their relationship with adverse clinical outcomes
OBJECTIVE: To determine the prevalence of individual-level social risk factors documented in unstructured data from electronic health records (EHRs) and the relationship between social risk factors and adverse clinical outcomes. STUDY SETTING: Inpatient encounters for adults (≥18 years) at the Unive...
Autores principales: | Rikard, S. Michaela, Kim, Bommae, Michel, Jonathan D., Peirce, Shayn M., Barnes, Laura E., Williams, Michael D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9467895/ https://www.ncbi.nlm.nih.gov/pubmed/36111269 http://dx.doi.org/10.1016/j.ssmph.2022.101210 |
Ejemplares similares
-
Leveraging unstructured data to identify hereditary angioedema patients in electronic medical records
por: Brouwer, Emily S., et al.
Publicado: (2021) -
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: ( 201) -
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: (2013) -
Finding Potential Adverse Events in the Unstructured Text of Electronic Health Care Records: Development of the Shakespeare Method
por: Bright, Roselie A, et al.
Publicado: (2021) -
The Revival of the Notes Field: Leveraging the Unstructured Content in Electronic Health Records
por: Assale, Michela, et al.
Publicado: (2019)