Cargando…
Formation of polymorphs and pores in small nanocrystalline iron oxide particles
A novel chemical vapor synthesis reactor design is used to control the pore-particle mesostructure and investigate the pore formation mechanism through the variation of residence time in oxygen. This enables the exploitation of the Kirkendall effect at the nanoscale to generate ultrasmall pores in s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9467998/ https://www.ncbi.nlm.nih.gov/pubmed/36097019 http://dx.doi.org/10.1038/s41598-022-19276-4 |
Sumario: | A novel chemical vapor synthesis reactor design is used to control the pore-particle mesostructure and investigate the pore formation mechanism through the variation of residence time in oxygen. This enables the exploitation of the Kirkendall effect at the nanoscale to generate ultrasmall pores in small nanocrystalline iron oxide particles. Detailed structural characterization and quantitative data analysis of complementary high resolution transmission electron microscopy images, X-ray diffractograms, nitrogen sorption isotherms and X-ray absorption spectra provide a consistent comprehensive picture of the hollow nanoparticles from the local to the microstructure. The pore formation mechanism seems to play a key role for β-Fe(2)O(3) polymorph formation. |
---|