Cargando…
Ensemble stacking rockburst prediction model based on Yeo–Johnson, K-means SMOTE, and optimal rockburst feature dimension determination
Rockburst forecasting plays a crucial role in prevention and control of rockburst disaster. To improve the accuracy of rockburst prediction at the data structure and algorithm levels, the Yeo–Johnson transform, K-means SMOTE oversampling, and optimal rockburst feature dimension determination are use...
Autores principales: | Sun, Lijun, Hu, Nanyan, Ye, Yicheng, Tan, Wenkan, Wu, Menglong, Wang, Xianhua, Huang, Zhaoyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468028/ https://www.ncbi.nlm.nih.gov/pubmed/36097043 http://dx.doi.org/10.1038/s41598-022-19669-5 |
Ejemplares similares
-
Novel ensemble intelligence methodologies for rockburst assessment in complex and variable environments
por: Li, Diyuan, et al.
Publicado: (2022) -
Experimental Investigation on the Influence of Depth on Rockburst Characteristics in Circular Tunnels
por: Si, Xuefeng, et al.
Publicado: (2022) -
Impact of Brittle Creep Failure on Time-Delayed Characteristics of Rockburst
por: Chen, Haozhe, et al.
Publicado: (2022) -
Insights into fundamental problems of rockburst under the modern structure stress field
por: Rong, Hai, et al.
Publicado: (2022) -
Comparative study of temperature effects on white sandstone and rockburst-like materials
por: Zhu, Zhengguo, et al.
Publicado: (2022)