Cargando…
Using Bayesian networks with Max-Min Hill-Climbing algorithm to detect factors related to multimorbidity
OBJECTIVES: Multimorbidity (MMD) is a medical condition that is linked with high prevalence and closely related to many adverse health outcomes and expensive medical costs. The present study aimed to construct Bayesian networks (BNs) with Max-Min Hill-Climbing algorithm (MMHC) algorithm to explore t...
Autores principales: | Song, Wenzhu, Gong, Hao, Wang, Qili, Zhang, Lijuan, Qiu, Lixia, Hu, Xueli, Han, Huimin, Li, Yaheng, Li, Rongshan, Li, Yafeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468216/ https://www.ncbi.nlm.nih.gov/pubmed/36110415 http://dx.doi.org/10.3389/fcvm.2022.984883 |
Ejemplares similares
-
Prognosis Model of Advanced Non-Small-Cell Lung Cancer Based on Max-Min Hill-Climbing Algorithm
por: Fu, Weizheng, et al.
Publicado: (2022) -
Using Bayesian networks with Tabu-search algorithm to explore risk factors for hyperhomocysteinemia
por: Song, Wenzhu, et al.
Publicado: (2023) -
Using random forest algorithm for glomerular and tubular injury diagnosis
por: Song, Wenzhu, et al.
Publicado: (2022) -
Gene Regulatory Networks Reconstruction Using the Flooding-Pruning Hill-Climbing Algorithm
por: Xing, Linlin, et al.
Publicado: (2018) -
Progressive Learning Hill Climbing Algorithm with Energy-Map-Based Initialization for Image Reconstruction
por: Zhang, Yuhui, et al.
Publicado: (2023)