Cargando…
Neural network training method for materials science based on multi-source databases
The fourth paradigm of science has achieved great success in material discovery and it highlights the sharing and interoperability of data. However, most material data are scattered among various research institutions, and a big data transmission will consume significant bandwidth and tremendous tim...
Autores principales: | Guo, Jialong, Chen, Ziyi, Liu, Zhiwei, Li, Xianwei, Xie, Zhiyuan, Wang, Zongguo, Wang, Yangang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468338/ https://www.ncbi.nlm.nih.gov/pubmed/36096926 http://dx.doi.org/10.1038/s41598-022-19426-8 |
Ejemplares similares
-
Graph neural networks for materials science and chemistry
por: Reiser, Patrick, et al.
Publicado: (2022) -
The Importance of Numeric Databases to Materials Science
por: Matula, Richard A.
Publicado: (1989) -
Multi-Source Deep Transfer Neural Network Algorithm
por: Li, Jingmei, et al.
Publicado: (2019) -
Sources of information influencing the state-of-the-science gap in hormone replacement therapy usage
por: Chew, Fiona, et al.
Publicado: (2017) -
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science
por: Mocanu, Decebal Constantin, et al.
Publicado: (2018)