Cargando…
Self-supervised learning for macromolecular structure classification based on cryo-electron tomograms
Macromolecular structure classification from cryo-electron tomography (cryo-ET) data is important for understanding macro-molecular dynamics. It has a wide range of applications and is essential in enhancing our knowledge of the sub-cellular environment. However, a major limitation has been insuffic...
Autores principales: | Gupta, Tarun, He, Xuehai, Uddin, Mostofa Rafid, Zeng, Xiangrui, Zhou, Andrew, Zhang, Jing, Freyberg, Zachary, Xu, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468634/ https://www.ncbi.nlm.nih.gov/pubmed/36111160 http://dx.doi.org/10.3389/fphys.2022.957484 |
Ejemplares similares
-
Few-shot learning for classification of novel macromolecular structures in cryo-electron tomograms
por: Li, Ran, et al.
Publicado: (2020) -
Template-free detection of macromolecular complexes in cryo electron tomograms
por: Xu, Min, et al.
Publicado: (2011) -
Adversarial domain adaptation for cross data source macromolecule in situ structural classification in cellular electron cryo-tomograms
por: Lin, Ruogu, et al.
Publicado: (2019) -
CryoETGAN: Cryo-Electron Tomography Image Synthesis via Unpaired Image Translation
por: Wu, Xindi, et al.
Publicado: (2022) -
A unified framework for packing deformable and non-deformable subcellular structures in crowded cryo-electron tomogram simulation
por: Liu, Sinuo, et al.
Publicado: (2020)