Cargando…
More slices, less truth: effects of different test-set design strategies for magnetic resonance image classification
AIM: To assess the effects of different test-set design strategies for magnetic resonance (MR) image classification using deep learning. METHODS: Error rates in 10 experimental settings were assessed. The performance of pretrained models and data augmentation were examined as possible contributing f...
Autores principales: | Glavaški, Mila, Velicki, Lazar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Croatian Medical Schools
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468729/ https://www.ncbi.nlm.nih.gov/pubmed/36046934 http://dx.doi.org/10.3325/cmj.2022.63.370 |
Ejemplares similares
-
Humans and machines in biomedical knowledge curation: hypertrophic cardiomyopathy molecular mechanisms’ representation
por: Glavaški, Mila, et al.
Publicado: (2021) -
Shared Molecular Mechanisms of Hypertrophic Cardiomyopathy and Its Clinical Presentations: Automated Molecular Mechanisms Extraction Approach
por: Glavaški, Mila, et al.
Publicado: (2021) -
Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers
por: Glavaški, Mila, et al.
Publicado: (2023) -
Subtypes and Mechanisms of Hypertrophic Cardiomyopathy Proposed by Machine Learning Algorithms
por: Glavaški, Mila, et al.
Publicado: (2022) -
Computed tomography: Will the slices reveal the truth
por: Haridas, Harish, et al.
Publicado: (2016)