Cargando…

LncRNA Meg3 promotes oxygen and glucose deprivation injury by decreasing angiogenesis in hBMECs by targeting the miR‑122‑5p/NDRG3 axis

Oxygen-glucose deprivation (OGD) is widely used as an in vitro model for stroke. The present study aimed to explore the mechanisms of action of long non-coding RNA (lncRNA) maternally expressed gene 3 (Meg3) in angiogenesis following OGD. The human brain microvascular endothelial cell line, hCMEC/D3...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Zhaoliang, Gong, Tingliang, Li, Weihong, Tao, Wenqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468836/
https://www.ncbi.nlm.nih.gov/pubmed/36160904
http://dx.doi.org/10.3892/etm.2022.11559
Descripción
Sumario:Oxygen-glucose deprivation (OGD) is widely used as an in vitro model for stroke. The present study aimed to explore the mechanisms of action of long non-coding RNA (lncRNA) maternally expressed gene 3 (Meg3) in angiogenesis following OGD. The human brain microvascular endothelial cell line, hCMEC/D3, was used to establish the OGD model. lncRNA Meg3 was highly expressed in hCMEC/D3 cells subjected to OGD. Furthermore, it was found that the overexpression of lncRNA Meg3 decreased the proliferation, migration and angiogenesis of hCMEC/D3 cells subjected to OGD, and increased cell apoptosis. Meg3 silencing exerted the opposite effects. Subsequently, lncRNA Meg3 increased the expression of NDRG family member 3 (NDRG3) by directly binding to miR-122-5p. The overexpression of miR-122-5p and the knockdown of NDRG3 reversed the inhibitory effects of Meg3 overexpression on the proliferation, migration and angiogenesis of hCMEC/D3 cells subjected to OGD, as well as the promoting effects of Meg3 overexpression on cell apoptosis. The present study demonstrated that lncRNA Meg3 functions as a competing endogenous RNA by targeting the miR-122-5p/NDRG3 axis in regulating OGD injury.