Cargando…

Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS(2) for NH(3) gas detection

2D transition metal dichalcogenide MoS(2) monolayer quantum dots (MoS(2)-QD) and their doped boron (B@MoS(2)-QD), nitrogen (N@MoS(2)-QD), phosphorus (P@MoS(2)-QD), and silicon (Si@MoS(2)-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand...

Descripción completa

Detalles Bibliográficos
Autores principales: Gber, Terkumbur E., Louis, Hitler, Owen, Aniekan E., Etinwa, Benjamin E., Benjamin, Innocent, Asogwa, Fredrick C., Orosun, Muyiwa M., Eno, Ededet A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468912/
https://www.ncbi.nlm.nih.gov/pubmed/36199611
http://dx.doi.org/10.1039/d2ra04028j
_version_ 1784788524873023488
author Gber, Terkumbur E.
Louis, Hitler
Owen, Aniekan E.
Etinwa, Benjamin E.
Benjamin, Innocent
Asogwa, Fredrick C.
Orosun, Muyiwa M.
Eno, Ededet A.
author_facet Gber, Terkumbur E.
Louis, Hitler
Owen, Aniekan E.
Etinwa, Benjamin E.
Benjamin, Innocent
Asogwa, Fredrick C.
Orosun, Muyiwa M.
Eno, Ededet A.
author_sort Gber, Terkumbur E.
collection PubMed
description 2D transition metal dichalcogenide MoS(2) monolayer quantum dots (MoS(2)-QD) and their doped boron (B@MoS(2)-QD), nitrogen (N@MoS(2)-QD), phosphorus (P@MoS(2)-QD), and silicon (Si@MoS(2)-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH(3) gas. The results from electronic properties showed that P@MoS(2)-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS(2)-QD surface, signifying the preferred chemisorption surface for NH(3) detection. The mechanistic studies provided in this study also indicate that the P@MoS(2)-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS(2) dopants, specifically the P@MoS(2)-QD surface, as a promising candidate for sensors to detect gas.
format Online
Article
Text
id pubmed-9468912
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-94689122022-10-04 Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS(2) for NH(3) gas detection Gber, Terkumbur E. Louis, Hitler Owen, Aniekan E. Etinwa, Benjamin E. Benjamin, Innocent Asogwa, Fredrick C. Orosun, Muyiwa M. Eno, Ededet A. RSC Adv Chemistry 2D transition metal dichalcogenide MoS(2) monolayer quantum dots (MoS(2)-QD) and their doped boron (B@MoS(2)-QD), nitrogen (N@MoS(2)-QD), phosphorus (P@MoS(2)-QD), and silicon (Si@MoS(2)-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH(3) gas. The results from electronic properties showed that P@MoS(2)-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS(2)-QD surface, signifying the preferred chemisorption surface for NH(3) detection. The mechanistic studies provided in this study also indicate that the P@MoS(2)-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS(2) dopants, specifically the P@MoS(2)-QD surface, as a promising candidate for sensors to detect gas. The Royal Society of Chemistry 2022-09-13 /pmc/articles/PMC9468912/ /pubmed/36199611 http://dx.doi.org/10.1039/d2ra04028j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Gber, Terkumbur E.
Louis, Hitler
Owen, Aniekan E.
Etinwa, Benjamin E.
Benjamin, Innocent
Asogwa, Fredrick C.
Orosun, Muyiwa M.
Eno, Ededet A.
Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS(2) for NH(3) gas detection
title Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS(2) for NH(3) gas detection
title_full Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS(2) for NH(3) gas detection
title_fullStr Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS(2) for NH(3) gas detection
title_full_unstemmed Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS(2) for NH(3) gas detection
title_short Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS(2) for NH(3) gas detection
title_sort heteroatoms (si, b, n, and p) doped 2d monolayer mos(2) for nh(3) gas detection
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468912/
https://www.ncbi.nlm.nih.gov/pubmed/36199611
http://dx.doi.org/10.1039/d2ra04028j
work_keys_str_mv AT gberterkumbure heteroatomssibnandpdoped2dmonolayermos2fornh3gasdetection
AT louishitler heteroatomssibnandpdoped2dmonolayermos2fornh3gasdetection
AT owenaniekane heteroatomssibnandpdoped2dmonolayermos2fornh3gasdetection
AT etinwabenjamine heteroatomssibnandpdoped2dmonolayermos2fornh3gasdetection
AT benjamininnocent heteroatomssibnandpdoped2dmonolayermos2fornh3gasdetection
AT asogwafredrickc heteroatomssibnandpdoped2dmonolayermos2fornh3gasdetection
AT orosunmuyiwam heteroatomssibnandpdoped2dmonolayermos2fornh3gasdetection
AT enoededeta heteroatomssibnandpdoped2dmonolayermos2fornh3gasdetection