Cargando…

Advances of 3D Printing in Vascularized Organ Construction

In the past several decades, three-dimensional (3D) printing has provided some viable tissues and organs for repairing or replacing damaged tissues and organs. However, the construction of sufficient vascular networks in a bioartificial organ has proven to be challenging. To make a fully functional...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shenglong, Liu, Siyu, Wang, Xiaohong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Whioce Publishing Pte. Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469199/
https://www.ncbi.nlm.nih.gov/pubmed/36105124
http://dx.doi.org/10.18063/ijb.v8i3.588
Descripción
Sumario:In the past several decades, three-dimensional (3D) printing has provided some viable tissues and organs for repairing or replacing damaged tissues and organs. However, the construction of sufficient vascular networks in a bioartificial organ has proven to be challenging. To make a fully functional bioartificial organ with a branched vascular network that can substitute its natural counterparts, various studies have been performed to surmount the limitations. Significant progress has been achieved in 3D printing of vascularized liver, heart, bone, and pancreas. It is expected that this technology can be used more widely in other bioartificial organ manufacturing. In this review, we summarize the specific applications of 3D printing vascularized organs through several rapid prototyping technologies. The limitations and future directions are also discussed.