Cargando…

An In Vitro study to Compare Dental Laser with other Treatment Modalities on Biofilm Ablation from Implant and Tooth Surfaces

BACKGROUND: Periodontal and peri-implant disorders are etiologically linked to bacterial biofilms. The researchers wanted to see how well the erbium-doped yttrium aluminum garnet (Er:YAG) laser removed bacterial biofilms along with attached epithelial cells (EC), gingival fibroblasts (GF), in additi...

Descripción completa

Detalles Bibliográficos
Autores principales: Vaddamanu, Sunil Kumar, Vyas, Rajesh, Kavita, Kumari, Sushma, R, Rani, R. Padmini, Dixit, Arti, Badiyani, Bhumika Kamal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469357/
https://www.ncbi.nlm.nih.gov/pubmed/36110744
http://dx.doi.org/10.4103/jpbs.jpbs_98_22
Descripción
Sumario:BACKGROUND: Periodontal and peri-implant disorders are etiologically linked to bacterial biofilms. The researchers wanted to see how well the erbium-doped yttrium aluminum garnet (Er:YAG) laser removed bacterial biofilms along with attached epithelial cells (EC), gingival fibroblasts (GF), in addition to osteoblast-like cells (OC) dentin along with titanium surfaces compared to previous therapy methods. METHODOLOGY: 3.5 days were spent growing bacterial biofilms on standardized dentin and also titanium samplings using a sand-blasted along with the acid-etched surface. Following that, the specimens were positioned into pockets that had been formed artificially. The following approaches were used to remove biofilm: (1) Er:YAG, (2) photodynamic therapy (PDT), and (3) curette (CUR) along with supplementary PDT (CUR/PDT). The remaining biofilms' colony forming units (CFUs) were determined, as well as the attachment of EC, GF, in addition to OC. Analysis of variance with a posthoc least significant difference was utilized in the statistical analysis. RESULTS: When compared to untreated dentin and titanium surfaces, all therapy strategies reduced total CFUs in statistically significant biofilms (p = 0.001). On the dentin, Er:YAG was as effective as CUR and PDT, but not as effective as CUR/PDT (p = 0.005). The application of Er:YAG on titanium surfaces leads to statistically significantly improved biofilm eradication equated to the supplementary three therapies (all p = 0.001). On untouched infested dentin and titanium surfaces, the counts of attached EC, GF, and OC were the lowermost. Atop the dentin, increased EC counts were detected after CUR/PDT (p = 0.006). On titanium, all cleaning procedures increased the counts of attached EC by a statistically significant amount (p = 0.001), with no variations between groups. After Er:YAG decontamination, there were statistically substantially elevated amounts of GF (p = 0.024) and OC (p = 0.001) than on untreated surfaces. CONCLUSION: The usage of Er:YAG laser to ablate subgingival biofilms and, specifically, to decontaminate titanium implant surfaces appears to be a promising strategy that needs further research.