Cargando…
GCMM: graph convolution network based on multimodal attention mechanism for drug repurposing
BACKGROUND: The main focus of in silico drug repurposing, which is a promising area for using artificial intelligence in drug discovery, is the prediction of drug–disease relationships. Although many computational models have been proposed recently, it is still difficult to reliably predict drug–dis...
Autores principales: | Zhang, Fan, Hu, Wei, Liu, Yirong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469552/ https://www.ncbi.nlm.nih.gov/pubmed/36100897 http://dx.doi.org/10.1186/s12859-022-04911-8 |
Ejemplares similares
-
MiRNA-Drug Resistance Association Prediction Through the Attentive Multimodal Graph Convolutional Network
por: Niu, Yanqing, et al.
Publicado: (2022) -
Drug Therapeutic-Use Class Prediction and Repurposing Using Graph Convolutional Networks
por: Chipofya, Mapopa, et al.
Publicado: (2021) -
Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing
por: Wang, Zichen, et al.
Publicado: (2020) -
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction
por: Li, Cong, et al.
Publicado: (2022) -
Multiple Attention Mechanism Graph Convolution HAR Model Based on Coordination Theory
por: Hu, Kai, et al.
Publicado: (2022)