Cargando…

MiRNA expression deregulation correlates with the Oncotype DX(®) DCIS score

BACKGROUND: Current clinical criteria do not discriminate well between women who will or those who will not develop ipsilateral invasive breast cancer (IBC), or a DCIS recurrence after a ductal carcinoma in situ (DCIS) diagnosis. The 12-gene Oncotype DX® DCIS assay (RT qPCR gene-based scoring system...

Descripción completa

Detalles Bibliográficos
Autores principales: Loudig, Olivier, Mitchell, Megan I., Ben-Dov, Iddo Z., Liu, Christina, Fineberg, Susan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469592/
https://www.ncbi.nlm.nih.gov/pubmed/36096802
http://dx.doi.org/10.1186/s13058-022-01558-4
Descripción
Sumario:BACKGROUND: Current clinical criteria do not discriminate well between women who will or those who will not develop ipsilateral invasive breast cancer (IBC), or a DCIS recurrence after a ductal carcinoma in situ (DCIS) diagnosis. The 12-gene Oncotype DX® DCIS assay (RT qPCR gene-based scoring system) was established and shown to predict the risk of subsequent ipsilateral IBC or DCIS recurrence. Recent studies have shown that microRNA (miRNA) expression deregulation can contribute to the development of IBC, but very few have evaluated miRNA deregulation in DCIS lesions. In this study, we sought to determine whether specific miRNA expression changes may correlate with Oncotype DX® DCIS scores. METHODS: For this study, we used archived formalin-fixed, paraffin-embedded (FFPE) specimens from 41 women diagnosed with DCIS between 2012 and 2018. The DCIS lesions were stratified into low (n = 26), intermediate (n = 10), and high (n = 5) risk score groups using the Oncotype DX® DCIS assay. Total RNA was extracted from DCIS lesions by macro-dissection of unstained FFPE sections, and next-generation small-RNA sequencing was performed. We evaluated the correlation between miRNA expression data and Oncotype score, as well as patient age. RT-qPCR validations were performed to validate the topmost differentially expressed miRNAs identified between the different risk score groups. RESULTS: MiRNA sequencing of 32 FFPE DCIS specimens from the three different risk group scores identified a correlation between expression deregulation of 17 miRNAs and Oncotype scores. Our analyses also revealed a correlation between the expression deregulation of 9 miRNAs and the patient’s age. Based on these results, a total of 15 miRNAs were selected for RT-qPCR validation. Of these, miR-190b (p = 0.043), miR-135a (p = 0.05), miR-205 (p = 0.00056), miR-30c (p = 0.011), and miR-744 (p = 0.038) showed a decreased expression in the intermediate/high Oncotype group when compared to the low-risk score group. A composite risk score was established using these 5 miRNAs and indicated a significant association between miRNA expression deregulation and the Oncotype DX® DCIS Score (p < 0.0021), between high/intermediate and low risk groups. CONCLUSIONS: Our analyses identified a subset of 5 miRNAs able to discriminate between Oncotype DX® DCIS score subgroups. Together, our data suggest that miRNA expression analysis may add value to the predictive and prognostic evaluation of DCIS lesions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13058-022-01558-4.