Cargando…
An investigation of privacy preservation in deep learning-based eye-tracking
BACKGROUND: The expanding usage of complex machine learning methods such as deep learning has led to an explosion in human activity recognition, particularly applied to health. However, complex models which handle private and sometimes protected data, raise concerns about the potential leak of ident...
Autores principales: | Seyedi, Salman, Jiang, Zifan, Levey, Allan, Clifford, Gari D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469631/ https://www.ncbi.nlm.nih.gov/pubmed/36100851 http://dx.doi.org/10.1186/s12938-022-01035-1 |
Ejemplares similares
-
Automated analysis of facial emotions in subjects with cognitive impairment
por: Jiang, Zifan, et al.
Publicado: (2022) -
Homomorphic Encryption-Based Federated Privacy Preservation for Deep Active Learning
por: Kurniawan, Hendra, et al.
Publicado: (2022) -
Utilizing computer vision for facial behavior analysis in schizophrenia studies: A systematic review
por: Jiang, Zifan, et al.
Publicado: (2022) -
Differential privacy for eye tracking with temporal correlations
por: Bozkir, Efe, et al.
Publicado: (2021) -
Editorial: Privacy-Preserving Deep Heterogeneous View Perception for Data Learning
por: Li, Peng
Publicado: (2022)