Cargando…

Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I

Stan is an open‐source probabilistic programing language, primarily designed to do Bayesian data analysis. Its main inference algorithm is an adaptive Hamiltonian Monte Carlo sampler, supported by state‐of‐the‐art gradient computation. Stan's strengths include efficient computation, an expressi...

Descripción completa

Detalles Bibliográficos
Autores principales: Margossian, Charles C., Zhang, Yi, Gillespie, William R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469701/
https://www.ncbi.nlm.nih.gov/pubmed/35570331
http://dx.doi.org/10.1002/psp4.12812
_version_ 1784788699086585856
author Margossian, Charles C.
Zhang, Yi
Gillespie, William R.
author_facet Margossian, Charles C.
Zhang, Yi
Gillespie, William R.
author_sort Margossian, Charles C.
collection PubMed
description Stan is an open‐source probabilistic programing language, primarily designed to do Bayesian data analysis. Its main inference algorithm is an adaptive Hamiltonian Monte Carlo sampler, supported by state‐of‐the‐art gradient computation. Stan's strengths include efficient computation, an expressive language that offers a great deal of flexibility, and numerous diagnostics that allow modelers to check whether the inference is reliable. Torsten extends Stan with a suite of functions that facilitate the specification of pharmacokinetic and pharmacodynamic models and makes it straightforward to specify a clinical event schedule. Part I of this tutorial demonstrates how to build, fit, and criticize standard pharmacokinetic and pharmacodynamic models using Stan and Torsten.
format Online
Article
Text
id pubmed-9469701
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-94697012022-09-27 Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I Margossian, Charles C. Zhang, Yi Gillespie, William R. CPT Pharmacometrics Syst Pharmacol Tutorial Stan is an open‐source probabilistic programing language, primarily designed to do Bayesian data analysis. Its main inference algorithm is an adaptive Hamiltonian Monte Carlo sampler, supported by state‐of‐the‐art gradient computation. Stan's strengths include efficient computation, an expressive language that offers a great deal of flexibility, and numerous diagnostics that allow modelers to check whether the inference is reliable. Torsten extends Stan with a suite of functions that facilitate the specification of pharmacokinetic and pharmacodynamic models and makes it straightforward to specify a clinical event schedule. Part I of this tutorial demonstrates how to build, fit, and criticize standard pharmacokinetic and pharmacodynamic models using Stan and Torsten. John Wiley and Sons Inc. 2022-06-23 2022-09 /pmc/articles/PMC9469701/ /pubmed/35570331 http://dx.doi.org/10.1002/psp4.12812 Text en © 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Tutorial
Margossian, Charles C.
Zhang, Yi
Gillespie, William R.
Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I
title Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I
title_full Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I
title_fullStr Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I
title_full_unstemmed Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I
title_short Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I
title_sort flexible and efficient bayesian pharmacometrics modeling using stan and torsten, part i
topic Tutorial
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469701/
https://www.ncbi.nlm.nih.gov/pubmed/35570331
http://dx.doi.org/10.1002/psp4.12812
work_keys_str_mv AT margossiancharlesc flexibleandefficientbayesianpharmacometricsmodelingusingstanandtorstenparti
AT zhangyi flexibleandefficientbayesianpharmacometricsmodelingusingstanandtorstenparti
AT gillespiewilliamr flexibleandefficientbayesianpharmacometricsmodelingusingstanandtorstenparti