Cargando…
Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I
Stan is an open‐source probabilistic programing language, primarily designed to do Bayesian data analysis. Its main inference algorithm is an adaptive Hamiltonian Monte Carlo sampler, supported by state‐of‐the‐art gradient computation. Stan's strengths include efficient computation, an expressi...
Autores principales: | Margossian, Charles C., Zhang, Yi, Gillespie, William R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469701/ https://www.ncbi.nlm.nih.gov/pubmed/35570331 http://dx.doi.org/10.1002/psp4.12812 |
Ejemplares similares
-
Bayesian PBPK modeling using R/Stan/Torsten and Julia/SciML/Turing.Jl
por: Elmokadem, Ahmed, et al.
Publicado: (2023) -
Improving pharmacometrics analysis efficiency using DataCheQC: An interactive, Shiny‐based app for quality control of pharmacometrics datasets
por: Dotan, Or, et al.
Publicado: (2023) -
Confidence and Prediction Intervals for Pharmacometric Models
por: Kümmel, Anne, et al.
Publicado: (2018) -
Visualization and Communication of Pharmacometric Models With Berkeley Madonna
por: Krause, A, et al.
Publicado: (2014) -
Pharmacometric models simulation using NONMEM, Berkeley Madonna and R
por: Park, Wan-Su
Publicado: (2017)