Cargando…
Mortality predictors in patients with COVID-19 pneumonia: a machine learning approach using eXtreme Gradient Boosting model
Recently, global health has seen an increase in demand for assistance as a result of the COVID-19 pandemic. This has prompted many researchers to conduct different studies looking for variables that are associated with increased clinical risk, and find effective and safe treatments. Many of these st...
Autores principales: | Casillas, N., Torres, A. M., Moret, M., Gómez, A., Rius-Peris, J. M., Mateo, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469825/ https://www.ncbi.nlm.nih.gov/pubmed/36098861 http://dx.doi.org/10.1007/s11739-022-03033-6 |
Ejemplares similares
-
A data-driven eXtreme gradient boosting machine learning model to predict COVID-19 transmission with meteorological drivers
por: Rahman, Md. Siddikur, et al.
Publicado: (2022) -
A tree based eXtreme Gradient Boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh
por: Noorunnahar, Mst, et al.
Publicado: (2023) -
Prediction of fall events during admission using eXtreme gradient boosting: a comparative validation study
por: Hsu, Yin-Chen, et al.
Publicado: (2020) -
A clinical diagnostic model based on an eXtreme Gradient Boosting algorithm to distinguish type 1 diabetes
por: Tang, Xiaohan, et al.
Publicado: (2021) -
Outcome prediction for acute kidney injury among hospitalized children via eXtreme Gradient Boosting algorithm
por: Deng, Ying-Hao, et al.
Publicado: (2022)