Cargando…
SemNet: Learning semantic attributes for human activity recognition with deep belief networks
Human Activity Recognition (HAR) is a prominent application in mobile computing and Internet of Things (IoT) that aims to detect human activities based on multimodal sensor signals generated as a result of diverse body movements. Human physical activities are typically composed of simple actions (su...
Autores principales: | Venkatachalam, Shanmuga, Nair, Harideep, Zeng, Ming, Tan, Cathy Shunwen, Mengshoel, Ole J., Shen, John Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469877/ https://www.ncbi.nlm.nih.gov/pubmed/36111178 http://dx.doi.org/10.3389/fdata.2022.879389 |
Ejemplares similares
-
Corrigendum: SemNet: Learning semantic attributes for human activity recognition with deep belief networks
por: Venkatachalam, Shanmuga, et al.
Publicado: (2023) -
SemNet: Using Local Features to Navigate the Biomedical Concept Graph
por: Sedler, Andrew R., et al.
Publicado: (2019) -
Optimizations for Computing Relatedness in Biomedical Heterogeneous
Information Networks: SemNet 2.0
por: Kirkpatrick, Anna, et al.
Publicado: (2022) -
Towards Semantically-Rich Spatial Network Representation Learning via Automated Feature Topic Pairing
por: Wang, Dongjie, et al.
Publicado: (2021) -
Attribute-Aware Recommender System Based on Collaborative Filtering: Survey and Classification
por: Chen, Wen-Hao, et al.
Publicado: (2020)