Cargando…
Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports
OBJECTIVE: We aim to reduce overfitting and model overconfidence by distilling the knowledge of an ensemble of deep learning models into a single model for the classification of cancer pathology reports. MATERIALS AND METHODS: We consider the text classification problem that involves 5 individual ta...
Autores principales: | De Angeli, Kevin, Gao, Shang, Blanchard, Andrew, Durbin, Eric B, Wu, Xiao-Cheng, Stroup, Antoinette, Doherty, Jennifer, Schwartz, Stephen M, Wiggins, Charles, Coyle, Linda, Penberthy, Lynne, Tourassi, Georgia, Yoon, Hong-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469924/ https://www.ncbi.nlm.nih.gov/pubmed/36110150 http://dx.doi.org/10.1093/jamiaopen/ooac075 |
Ejemplares similares
-
Automatic information extraction from childhood cancer pathology reports
por: Yoon, Hong-Jun, et al.
Publicado: (2022) -
A Keyword-Enhanced Approach to Handle Class Imbalance in Clinical
Text Classification
por: Blanchard, Andrew E., et al.
Publicado: (2022) -
Deep active learning for classifying cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2021) -
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks
por: Alawad, Mohammed, et al.
Publicado: (2019) -
Using case-level context to classify cancer pathology reports
por: Gao, Shang, et al.
Publicado: (2020)