Cargando…
Inferring structural and dynamical properties of gene networks from data with deep learning
The reconstruction of gene regulatory networks (GRNs) from data is vital in systems biology. Although different approaches have been proposed to infer causality from data, some challenges remain, such as how to accurately infer the direction and type of interactions, how to deal with complex network...
Autores principales: | Chen, Feng, Li, Chunhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469930/ https://www.ncbi.nlm.nih.gov/pubmed/36110897 http://dx.doi.org/10.1093/nargab/lqac068 |
Ejemplares similares
-
Untangling biological factors influencing trajectory inference from single cell data
por: Charrout, Mohammed, et al.
Publicado: (2020) -
Deep learning identifies erroneous microarray-based, gene-level conclusions in literature
por: Qin, Yanan, et al.
Publicado: (2021) -
Structure-based deep learning for binding site detection in nucleic acid macromolecules
por: Kozlovskii, Igor, et al.
Publicado: (2021) -
DeepMicrobes: taxonomic classification for metagenomics with deep learning
por: Liang, Qiaoxing, et al.
Publicado: (2020) -
Prediction of G4 formation in live cells with epigenetic data: a deep learning approach
por: Korsakova, Anna, et al.
Publicado: (2023)